Решить уравнение: cos4x-cos2x=0
cos(4x)-cos(2x)=0
cos^2(2x)-sin^2(2x)-cos(2x)=0
cos^2(2x)-(1-cos^2(2x))-cos(2x)=0
2cos^2(2x)-cos(2x)-1=0
t=cos(2x)
2t^2-t-1=0
D=9
t1=1, t2=-1/2
cos(2x)=1 cos(2x)=-1/2
2x=2pi*n 2x=+-2pi/3+2pi*k
x=pi*n, n принадлежит Z x=+-pi/3+pi*k, k принадлежит Z
попробуй так:)))