1) f' = -4*(2x+7)^-5 *2 -3*(1-x)^2*(-1) = -8/(2x+7)^5 +3*(1-x)^2
f'(-3) = -8/(-6+7)^5 +3*(1+3)^2 = -8+3*16 = -8+48 =40
2) f' = (-sin4x)*4 -1/sin^2 x= - (4*sin4x +1/sin^2 x)
f'(пи/2) = -(4*sin 2пи+ 1/ sin^2 (пи/2)) = -(4*0 +1/1) = -1
3) f' = [(x^2-8x+12)^ (1/2)]' = 1/2* ((x^2-8x+12)^ (-1/2))*(2x-8) = 2*(x-4)/(2*(x^2-8x+12)^ (1/2))=
=(x-4)/(x^2-8x+12)^ (1/2) = (x-4)/корень(x^2-8x+12)
f'(4)=(4-4)/корень(16-32+12)=0
4)f ' = sin (x/3+пи/6) +x*cos(x/3+пи/6) * 1/3 = sin (x/3+пи/6)+(x*cos(x/3+пи/6))/3
f'(пи)= sin(пи/3+пи/6) + (пи*cos(пи/3+пи/6))/3 = sin (пи/2)+ (пи*cos *(пи/2))/3= 1+ пи*0/3 = 1