x^2dx=\frac13dx^3\|\\
=\int{\frac{\frac13dx^3}{x^3-4}}=\frac13\int{\frac{dx^3}{x^3-4}}=\\
\|d(x^3-4)=dx^3\|
=\frac13\int{\frac{d(x^3-4)}{x^3-4}}=\\
\|x^3-4=p;d(x^3-4)=dp\|\\
=\frac13\int{\frac{dp}{p}}=\frac13\cdot\ln|p|+C=\frac13\ln|x^3-4|+C" alt="\int{\frac{x^2dx}{x^3-4}}=\\
\|dx^3=3x^2dx==>x^2dx=\frac13dx^3\|\\
=\int{\frac{\frac13dx^3}{x^3-4}}=\frac13\int{\frac{dx^3}{x^3-4}}=\\
\|d(x^3-4)=dx^3\|
=\frac13\int{\frac{d(x^3-4)}{x^3-4}}=\\
\|x^3-4=p;d(x^3-4)=dp\|\\
=\frac13\int{\frac{dp}{p}}=\frac13\cdot\ln|p|+C=\frac13\ln|x^3-4|+C" align="absmiddle" class="latex-formula">