0} \atop {x^2-2>0}} \right. \; \left \{ {{x\in (0,+\infty)} \atop {x\in (-\infty,-\sqrt2)U(\sqrt2,+\infty)}} \right. \\\\\to \; x\in(\sqrt2,+\infty)\\\\x^2-2=x\\\\x^2-x-2=0\\\\x_1=-1,\; x_2=2\; \; (teor.\; Vieta)\\\\Otvet:\; x=2" alt="log_{\sqrt3}(x^2-2)=log_{\sqrt3}x\; ,\; \; \; OOF:\; \left \{ {{x>0} \atop {x^2-2>0}} \right. \; \left \{ {{x\in (0,+\infty)} \atop {x\in (-\infty,-\sqrt2)U(\sqrt2,+\infty)}} \right. \\\\\to \; x\in(\sqrt2,+\infty)\\\\x^2-2=x\\\\x^2-x-2=0\\\\x_1=-1,\; x_2=2\; \; (teor.\; Vieta)\\\\Otvet:\; x=2" align="absmiddle" class="latex-formula">