Пусть на запад идёт более медленный теплоход со скоростью Х, тогда скорость второго Х+6. Пройденный путь у первого за два часа составит 2*Х, у второго 2*(Х+6)=2*Х+12. Движутся они перпендикулярно друг другу, так что можно представить прямоугольный треугольник с катетами 2*Х и 2*Х+12 и гипотенузой 60. По теореме Пифагора:
60*60=2*Х*2*Х + (2*Х+12)*(2*Х+12)
3600 = 4*Х^2 + 4*X^2 + 48*X + 144
Переносим всё вправо:
8*X^2 + 48*X - 3456 = 0
Для упрощения сократим на 8:
X^2 + 6*X - 432 = 0
Решаем квадратное уравнение. Дискриминант:
D = 6*6 + 4*432 = 36 + 1728 = 42^2
Корни:
X1,2 = (-6 +- 42) / 2 = {-24; 18}
В нашей ситуации скорость отрицательной быть не должна, поэтому отбрасываем первый корень. Значит подходит Х=18, то есть скорость первого корабля 18 км/ч, а скорость второго 24 км/ч.
Можно проверить.