Доказать Тождество COS^4 a-SIN^4 a=1-2 SIN^2 a
(cos^2-sin^2)(cos^2+sin^2)=1-2sin^2 cos^2-sin^2=1-2sin^2 1-sin^2-sin^2=1-2sin^2 1-2sin^2=1-2sin^2
Cos^4a-sin^4a=1-2sin²a (cos²a)²-sin^4a=1-2sin²a (1-sin²a)²-sin^4a=1-2sin²a (1-2sin²a+sin^4a)-sin^4a=1-2sin²a 1+sin^4a-sin^4a=1-2sin²a+2sin²a 1=1