АС = ВС = АВ = а = 3√3 см. Ребро ДС = 5см
МС - медиана и высота, т.к. треугольник АВС правильный. (МС перп. АВ)
МС = а·sin 60 = 3√3 · 0.5 √3 = 4.5cм
В ΔМДС гипотенуза ДС = 5см, катет МС = 4,5см, катет МД найдём по теореме Пифагора МД² = ДС² - МС² = 25 - 20,25 = 4,75 = 19/4
МД = 0,5√19 см
Площадь ΔМДС равна половине произведения катетов МС и МД
S МДС = 0,5·4,5·0,5√19 = 1,125 √19 или (9√19)/8 см²
Ответ: (9√19)/8 см²
PS что-то странный ответ получился. Посмотри, данные вы не перепутали? Может, величина стороны корень из 3 делить на три или ещё что?