Угол между биссектрисой и диагональю,исходящими из одной вершины прямоугольника,равен 30 градусов,а площадь треугольника,отделенного биссектрисой от прямоугольника,равна 12,5 см2. найдите площадь прямоугольника.
На большей стороне биссектриса прямого угла отсекает отрезок, равный боковой (меньшей) стороне. Оставшийся отрезок большей стороны является стороной треугольника, в котором можно определить биссектрису, а два прилегающие к ней угла известны: 30° и 180-45 = 135°. Биссектрису определим из площади: обозначим боковую сторону х. Площадь 12,5 = (1/2)*х*х х² = 25 х = 5. Биссектриса будет равна 5√2. По теореме синусов определяем отрезок большей стороны: в = ((5√2)*sin 30) / sin(180-30-135) = 13.660254 см. Тогда большая сторона равна 5 + 13.660254 = 18.660254 см. Площадь прямоугольника равна 5* 18.660254 = 93.30127 см².