равнобедренный треугольник, тот у которого все стороны равны, следовательно и углы равны. доказывать не буду, это долго. но в доказательстве без вышеупомянутого никак не обойтись
рисунок легко представить - "звезда Давида" - 2 одинаковых треугольника. а тут второй будет находится внутри первого
Пусть треугольник ABC – равносторонний с основанием AB, и CD – медиана, проведенная к основанию. В треугольниках CAD и CBD углы CAD и CBD равны, как углы при основании равностороннего треугольника (по теореме: в равностороннем треугольнике углы равны), стороны AC и BC равны по определению равностороннего треугольника, стороны AD и BD равны, потому что D – середина отрезка AB. Отсюда получаем, что эти треугольники равны
Из равенства треугольников следует равенство соответствующих углов: ACD = BCD, ADC = BDC. Из первого равенства следует, что CD – биссектриса. Углы ADC и BDC смежные, и в силу второго равенства они прямые, поэтому CD – высота треугольника