![image](https://tex.z-dn.net/?f=log_5%5Csqrt%7B3x%2B4%7D%5Ccdot+log_%7Bx%7D5%3D1%5C%3B+%2C%5C%5C%5C%5CODZ%3A%5C%3B++%5Cleft+%5C%7B+%7B%7B3x%2B4%3E0%7D+%5Catop+%7Bx%3E0%2C%5C%3B+x%5Cne+1%7D%7D+%5Cright.+%5C%3B+%2C%5C%3B+x%5Cin+%280%2C1%29U%281%2C%2B%5Cinfty%29%5C%5C%5C%5Clog_5%5Csqrt%7B3x%2B4%7D%5Ccdot+%5Cfrac%7B1%7D%7Blog_5x%7D%3D1%5C%5C%5C%5Clog_5%5Csqrt%7B3x%2B4%7D%3Dlog_5x%5C%5C%5C%5Clog_5%5Csqrt%7B3x%2B4%7D-log_5x%3D0%5C%5C%5C%5Clog_5%28%5Cfrac%7B%5Csqrt%7B3x%2B4%7D%7D%7Bx%7D%29%3Dlog_51%5C%5C%5C%5C%5Cfrac%7B%5Csqrt%7B3x%2B4%7D%7D%7Bx%7D%3D1%5C%5C%5C%5C%5Csqrt%7B3x%2B4%7D%3Dx%5C%5C%5C%5C3x%2B4%3Dx%5E2%5C%5C%5C%5Cx%5E2-3x-4%3D0%5C%5C%5C%5Cx_1%3D-1%2C%5C%3B+x_2%3D4%5Cin+ODZ%5C%5C%5C%5COtvet%3A%5C%3B+x%3D4.)
0} \atop {x>0,\; x\ne 1}} \right. \; ,\; x\in (0,1)U(1,+\infty)\\\\log_5\sqrt{3x+4}\cdot \frac{1}{log_5x}=1\\\\log_5\sqrt{3x+4}=log_5x\\\\log_5\sqrt{3x+4}-log_5x=0\\\\log_5(\frac{\sqrt{3x+4}}{x})=log_51\\\\\frac{\sqrt{3x+4}}{x}=1\\\\\sqrt{3x+4}=x\\\\3x+4=x^2\\\\x^2-3x-4=0\\\\x_1=-1,\; x_2=4\in ODZ\\\\Otvet:\; x=4." alt="log_5\sqrt{3x+4}\cdot log_{x}5=1\; ,\\\\ODZ:\; \left \{ {{3x+4>0} \atop {x>0,\; x\ne 1}} \right. \; ,\; x\in (0,1)U(1,+\infty)\\\\log_5\sqrt{3x+4}\cdot \frac{1}{log_5x}=1\\\\log_5\sqrt{3x+4}=log_5x\\\\log_5\sqrt{3x+4}-log_5x=0\\\\log_5(\frac{\sqrt{3x+4}}{x})=log_51\\\\\frac{\sqrt{3x+4}}{x}=1\\\\\sqrt{3x+4}=x\\\\3x+4=x^2\\\\x^2-3x-4=0\\\\x_1=-1,\; x_2=4\in ODZ\\\\Otvet:\; x=4." align="absmiddle" class="latex-formula">