Докажите, что медиана треугольника меньше полусуммы сторон, которые выходят с ней из...

0 голосов
149 просмотров

Докажите, что медиана треугольника меньше полусуммы сторон, которые выходят с ней из одной вершины, и больше полуразности суммы этих сторон и третьей стороны треугольника


Геометрия (24 баллов) | 149 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Пусть две стороны треугольника равны a и b, а медиана проведена к третьей стороне, которая равна с. Длина медианы пусть равна m. Тогда если продолжить медиану на ее длину, и достроить до параллелограмма, то верно неравенство треугольника:
a+b>2m. Отсюда первое условие.
Для второго, исходный треугольник разбит медианой на 2 треугольника. Для каждого из них неравенство треугольника можно записать так:
m+c/2>a
m+c/2>b
Складывая эти неравенства и перенося с, получим 2m>a+b-c, что и требовалось.

(56.6k баллов)
0

Спасибо. Сейчас попробую разобраться.