Объясните, пожалуйста, как мы неравенство преобразовали в другое неравенство? Как мы его...

0 голосов
30 просмотров

Объясните, пожалуйста, как мы неравенство
18x- x^{2} -45 \geq 0
преобразовали в другое неравенство? Как мы его так на множители разложили?
(x-3)(x-15) \leq 0


Математика (12.7k баллов) | 30 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

18x-x²-45≥0
-x²+18x-45≥0 | : (-1)
x²-18x+45≤0 (обе части верного неравенства разделили на число <0)<br>метод интервалов. 
1.x²-18x+45=0
D=(-18)²-4*1*45=324-180=144
x₁=(18-12)/2, x₁=3
x₂=(18+12)/2, x₂=15
ax²+bx+c=a*(x-x₁)*(x-x₂)
x²-18x+45=(x-3)*/(x-15)
(x-3)*(x-15)≤0
2. 
     +                     -                  +
--------------|----------------|-----------------  x
                3                  15
x∈[3;15]

(275k баллов)
0

из-за одного минуса я пошел решать неравенство вообще не в ту сторону, ойойойой. Благодарю)

0 голосов

Во-первых, у неравенства в исходном виде имеется знак минус перед x², неравенство удобнее решать, когда стоит знак плюс, поэтому обе части неравенства умножаем на -1, при этом меняется знак неравенства.
В Вашем случае получим:
18x-x²-45≥0 ⇒ -x²+18x-45≥0 ⇒ x²-18x+45≤0.
Во-вторых, многочлен вида x²+px+q можно разложить на множители: x²+px+q=(x-x₁)(x-x₂), где x₁ и x₂ - корни уравнения x²+px+q=0.
В Вашем случае x²-18x+45=(x-3)(x-15), так как x₁=3 и x₂=15 являются корнями уравнения x²-18x+45=0.

(10.8k баллов)
0

вот оно в чем дело было. Я на -1 умножить-то умножил, а вот знак у последнего коэффициента поменять забыл. И дискриминант у меня зашкаливал, что разумеется ломало мне всю картину. Спасибо вам за объяснение