Помогите решить задачу по геометрии: Дано: длина вектора a = 1, вектора b = 2, вектора c...

0 голосов
39 просмотров

Помогите решить задачу по геометрии:

Дано: длина вектора a = 1, вектора b = 2, вектора c = 3,
угол между векторами a;b = 60 градусов
угол между векторами b;c = 90, между a;c = 120
Найдите косинус угла между векторами a-b-c и b
Варианты ответа:

1. - 1/sqrt 15
2. - 1/2*sqrt15
3. - 3/2*sqrt 15

Напишите решение:


Геометрия (120 баллов) | 39 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Найдем скалярные произведения bc, ab, ac:
bc=|b|*|c|*cos(90)=0
ab=|a|*|b|*cos(60)=1*2*(1/2)=1
ac=|a|*|c|*cos(120)=1*3*(-1/2)=-3/2
Теперь найдем скалярное произведение векторов a-b-c и b:
(a-b-c)b=ab-b^2-cb=1-4-0=-3
и квадрат длины a-b-c:
(a-b-c)^2=a^2+b^2+c^2-2ac-2ab+2bc=1+4+9+2*(3/2)-2*1+2*0=15
Значит, искомый косинус равен ((a-b-c)b)/(|b|*|a-b-c|)=-3/(2√15).












(56.6k баллов)