1) f ' (x) = 3 * (x + 1)² * (x + 2) + (x + 1)³ * 1 = (x + 1)² * (3 * x + 6 + x + 1) =
(x + 1)² * (4 * x + 7)
f ' (1) = (1 + 1)² * (4 + 7) = 44
2) f (x) = 1 - 2 / (x² + 1)
f ' (x) = 0 - 2 * (-2 * x) / (x² + 1)² = 4 * x / (x² + 1)²
f ' (1) = 4 * 1 / 2² = 4 / 4 = 1