Y=3x4+4x3+1 ** отрезке (-2:1) скобки квадратные .найти наименьшее и наибольшее значение

0 голосов
181 просмотров

Y=3x4+4x3+1 на отрезке (-2:1) скобки квадратные .найти наименьшее и наибольшее значение


Алгебра (12 баллов) | 181 просмотров
Дан 1 ответ
0 голосов

Для нахождения наибольшего и наименьшего значения функции найдем ее производную:
Y'=(3x^4+4x3^+1)'= 12x^3+12x^2Теперь найдем точки при которых производная равна нолю
12x^3+12x^2=012х^2(x+1)=0
откуда получаем два новых уравнения
12х^2=0 и х+1=0
х=0           х=-1
Обе точки попадают в заданный интервал
Теперь находим значенеи функции в найденных точках и на концах отрезка
у(0)=3*0^4+4*0^3+1=0+0+1=1
у(-1)=3*(-1)^4+4*(-1)^3+1=3-4+1=0
у(-2)=3*(-2)^4+4*(-2)^3+1=48-32+1=17
у(1)=3*1^4+4*1^3+1=3+4+1=8
 Отсюда видно что наибольшее значение функции на отрезке (-2,1)=у(-2)=17, а наименьшее  на этом же отрезке=у(-1)=0

Ответ: уmax[-2;1]=y(-2)=17, ymin[-2;1]=y(-1)=0

(6.2k баллов)