В правильной шестиугольной пирамиде боковое ребро равно 6,5, а сторона основания 2,5....

0 голосов
444 просмотров

В правильной шестиугольной пирамиде боковое ребро равно 6,5, а сторона основания 2,5. найдите высоту


Геометрия (15 баллов) | 444 просмотров
0

Раз все боковые ребра равны, равны и их проекции на основание. То есть проекция ребра на основание - это радиус описанной вокруг основания окружности. Значит, она тоже равна 2,5; Отсюда высота равна 6 (каждое боковое ребро, его проекция на основание и высота пирамиды образуют прямоугольный треугольник, раз все ребра равны, эти треугольники равны по признаку "катет + гипотенуза", отсюда следует все сказанное)

Дан 1 ответ
0 голосов
Правильный ответ

Высота правильной пирамиды падает в точку пересечения больших диагоналей шестиугольника в основании и образует с ребром пирамиды и половиной диагонали прямоугольный треугольник. Половина большой диагонали равняется боковой стороне. Значит гипотенуза треугольника равна боковому ребру = 6,5 см, катет = 2,5 см. Тогда по Пифагору высота равна корню 6,5^2 - 2,5^2 = корню (42,25-6,25)  = 6 см.

(127k баллов)