Существуют ли попарно различные вещественные числа a,b,c, такие, что...

0 голосов
48 просмотров

Существуют ли попарно различные вещественные числа a,b,c, такие, что (a-b)^5+(b-c)^5+(c-a)^5=0?


Алгебра (15 баллов) | 48 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Нет, не существуют. Простым раскрытием скобок легко проверить, что для любых x,y,z верно равенство x^5+y^5-(x+y)^5=-5xy(x+y)(x^2+xy+y^2).
Тогда, если обозначить x=a-b≠0, y=b-c≠0, z=c-a≠0, то имеем z=-(x+y) и
(a-b)^5+(b-c)^5+(c-a)^5=x^5+y^5+z^5=x^5+y^5-(x+y)^5=-5xy(x+y)(x^2+xy+y^2)=
=5xyz(x^2+xy+y^2). Т.к. x^2+xy+y^2>0 для всех x и y, и x,y,z≠0, то все выражение никогда не равно 0.

(56.6k баллов)