Помогите!!Срочно нужно!! Тема: арифметическая и геометрическая прогресии Докажите, что...

0 голосов
48 просмотров

Помогите!!Срочно нужно!! Тема: арифметическая и геометрическая прогресии

Докажите, что для любого натурального значения n выполняется равенство

1*4+2*7+3*10+...+ n(3n+1)= n(n+1)^2

^2 это значит выражение в квадрате


Алгебра (690 баллов) | 48 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

При n = 1 равенство примет вид 4 = 4, следовательно, P(1) истинно. Предположим, что данное равенство справедливо, то есть, имеет место

1*4+2*7+3*10+...+ n(3n+1)= n(n+1)^2


Следует проверить (доказать), что P(n + 1), то есть

1*4+2*7+3*10+...+ n(3n+1) + (n + 1) (3n + 4) = (n + 1)(n + 2)^2
истинно. Поскольку (используется предположение индукции)

1*4+2*7+3*10+...+ n(3n+1) + (n + 1) (3n + 4) = n(n+1)^2 + (n + 1) (3n + 4) 

получим

n(n+1)^2 + (n + 1) (3n + 4)  = (n + 1) (n (n + 1) + 3n + 4) = 
= (n + 1)(n^2 + n + 3n + 4) = (n + 1) (n^2 + 4n + 4) = 
= (n+ 1)(n + 2)^2 

то есть, P(n + 1) - истинное утверждение.

(314k баллов)