Проведём серединные перпендикуляры к сторонам AB и AC треугольника ABC. Они пересекаются, так как перпендикулярные им прямые AB и AC пересекаются.
Пусть O – точка пересечения серединных перпендикуляров к сторонам AB и AC. Тогда по свойству серединного перпендикуляра к отрезку
OA = OB и OA = OC, поэтому OB = OC. Значит, точка O лежит на серединном перпендикуляре к отрезку BC, то есть серединный перпендикуляр к стороне BC также проходит через точкуO.