Решите уравнение x\x-5+7x+35/x2-25

0 голосов
187 просмотров

Решите уравнение x\x-5+7x+35/x2-25


Алгебра (18 баллов) | 187 просмотров
Дан 1 ответ
0 голосов
\frac{x}{x-5} + \frac{7x+35}{x^2-25}=2
\frac{x}{x-5}+ \frac{7x+35}{(x-5)(x+5)}=2
     |*(x-5)(x+5)

ОДЗ:
x-50
x+50

x5
x-5

x(x+5)+7x+35=2(x-5)(x+5)
x^2+5x+7x+35=2x^2-50
-x^2+12x+85=0
x^2-12x-85=0
D=b^2-4ac=(-12)^2-4*1*(-85)=144+340=484
x_1= \frac{-b+ \sqrt{D} }{2a} = \frac{12+22}{2} =17
x_2= \frac{-b- \sqrt{D} }{2a} = \frac{12-22}{2} = \frac{-10}{2}=-5
Ответ: 17;-5
(18.3k баллов)
0

Извинитее я забыла в конце там ещё =2

0

допишите уравнение, я могу не правильно понять.

0

x\x-5+7x+35/x2-25=2