Центром окружности, вписанной в треугольник, является точка пересечения его биссектрис. В равностороннем треугольнике биссектрисы, высоты и медианы совпадают. Значит, центр вписанной окружности совпадает с точкой пересечения медиан, а радиус вписанной окружности является частью медианы. Медианы точкой пересечения делятся в отношении 2:1, считая от вершины. Если радиус равен 8, то вся медиана равна 8*3=24. А так так медиана совпадает с высотой, то и высота равна 24. Ответ: 24.