Радиус нижнего основания равен
![R=\sqrt{\frac{S_1}{\pi}}=\sqrt{\frac{38 *\pi}{\pi}}=\sqrt{38} R=\sqrt{\frac{S_1}{\pi}}=\sqrt{\frac{38 *\pi}{\pi}}=\sqrt{38}](https://tex.z-dn.net/?f=R%3D%5Csqrt%7B%5Cfrac%7BS_1%7D%7B%5Cpi%7D%7D%3D%5Csqrt%7B%5Cfrac%7B38+%2A%5Cpi%7D%7B%5Cpi%7D%7D%3D%5Csqrt%7B38%7D)
Радиус верхнего основания равен
![r=\sqrt{\frac{S_2}{\pi}}=\sqrt{\frac{6 *\pi}{\pi}}=\sqrt{6} r=\sqrt{\frac{S_2}{\pi}}=\sqrt{\frac{6 *\pi}{\pi}}=\sqrt{6}](https://tex.z-dn.net/?f=r%3D%5Csqrt%7B%5Cfrac%7BS_2%7D%7B%5Cpi%7D%7D%3D%5Csqrt%7B%5Cfrac%7B6+%2A%5Cpi%7D%7B%5Cpi%7D%7D%3D%5Csqrt%7B6%7D)
образующая усеченного конуса равна
![L=\frac{S}{\pi(R+r)}=\frac{64}{(\sqrt{38}+\sqrt{6})*\pi}=\\\\ \frac{64*(\sqrt{38}-\sqrt{6})}{(38-6)*\pi}}=\\\\ \frac{64*(\sqrt{38}-\sqrt{6})}{32*\pi}=\\\\ \frac{2*(\sqrt{38}-\sqrt{6})}{\pi} L=\frac{S}{\pi(R+r)}=\frac{64}{(\sqrt{38}+\sqrt{6})*\pi}=\\\\ \frac{64*(\sqrt{38}-\sqrt{6})}{(38-6)*\pi}}=\\\\ \frac{64*(\sqrt{38}-\sqrt{6})}{32*\pi}=\\\\ \frac{2*(\sqrt{38}-\sqrt{6})}{\pi}](https://tex.z-dn.net/?f=L%3D%5Cfrac%7BS%7D%7B%5Cpi%28R%2Br%29%7D%3D%5Cfrac%7B64%7D%7B%28%5Csqrt%7B38%7D%2B%5Csqrt%7B6%7D%29%2A%5Cpi%7D%3D%5C%5C%5C%5C+%5Cfrac%7B64%2A%28%5Csqrt%7B38%7D-%5Csqrt%7B6%7D%29%7D%7B%2838-6%29%2A%5Cpi%7D%7D%3D%5C%5C%5C%5C+%5Cfrac%7B64%2A%28%5Csqrt%7B38%7D-%5Csqrt%7B6%7D%29%7D%7B32%2A%5Cpi%7D%3D%5C%5C%5C%5C+%5Cfrac%7B2%2A%28%5Csqrt%7B38%7D-%5Csqrt%7B6%7D%29%7D%7B%5Cpi%7D)
Высота по теореме Пифагора равна
![h=\sqrt{L^2-(R-r)^2}=\sqrt{(\frac{2*(\sqrt{38}-\sqrt{6})}{\pi})^2-(\sqrt{38}-\sqrt{6})^2}=(\sqrt{38}-\sqrt{6})*\sqrt{\frac{4-(\pi)^2}{(\pi)^2} h=\sqrt{L^2-(R-r)^2}=\sqrt{(\frac{2*(\sqrt{38}-\sqrt{6})}{\pi})^2-(\sqrt{38}-\sqrt{6})^2}=(\sqrt{38}-\sqrt{6})*\sqrt{\frac{4-(\pi)^2}{(\pi)^2}](https://tex.z-dn.net/?f=h%3D%5Csqrt%7BL%5E2-%28R-r%29%5E2%7D%3D%5Csqrt%7B%28%5Cfrac%7B2%2A%28%5Csqrt%7B38%7D-%5Csqrt%7B6%7D%29%7D%7B%5Cpi%7D%29%5E2-%28%5Csqrt%7B38%7D-%5Csqrt%7B6%7D%29%5E2%7D%3D%28%5Csqrt%7B38%7D-%5Csqrt%7B6%7D%29%2A%5Csqrt%7B%5Cfrac%7B4-%28%5Cpi%29%5E2%7D%7B%28%5Cpi%29%5E2%7D)
Под корнем отрицательная величина, гдето в условии ошибка!!!
Дальше бы
Ищем угол между образующей и плоскостью основания этого усеченного конуса
![sin \alpha=\frac{h}{L}= sin \alpha=\frac{h}{L}=](https://tex.z-dn.net/?f=sin+%5Calpha%3D%5Cfrac%7Bh%7D%7BL%7D%3D)
а затем непосрественно угол