решите пожалуйста,хочу себя проверить!!!

0 голосов
39 просмотров

решите пожалуйста,хочу себя проверить!!!


image

Алгебра (17 баллов) | 39 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

 

\left \{ {{\log_{5-x}\frac{x+4}{(x-5)^{10}}\geq-10,} \atop {x^3+8x^2+\frac{50x^2-x-7}{x-7}\leq1;}} \right.

image0,\\5-x\neq1,\\ \frac{x+4}{(x-5)^{10}}>0, \\(x-5)^{10}\neq0, \\ x-7\neq0; \end{cases} \ \begin{cases} x<5,\\x\neq4,\\ x>-4, \\x\neq5, \\ x\neq7; \end{cases} \ D=(-4;4)\cup(4;5), \\ [\tex]

[tex]\log_{5-x}\frac{x+4}{(x-5)^{10}}\geq-10, \\ \left \{ {{0<5-x<1,} \atop {\frac{x+4}{(x-5)^{10}}\leq(5-x)^{-10}};} \right. \ \left \{ {{4<x" alt="\begin{cases} 5-x>0,\\5-x\neq1,\\ \frac{x+4}{(x-5)^{10}}>0, \\(x-5)^{10}\neq0, \\ x-7\neq0; \end{cases} \ \begin{cases} x<5,\\x\neq4,\\ x>-4, \\x\neq5, \\ x\neq7; \end{cases} \ D=(-4;4)\cup(4;5), \\ [\tex]

[tex]\log_{5-x}\frac{x+4}{(x-5)^{10}}\geq-10, \\ \left \{ {{0<5-x<1,} \atop {\frac{x+4}{(x-5)^{10}}\leq(5-x)^{-10}};} \right. \ \left \{ {{4<x" align="absmiddle" class="latex-formula">

image1,} \atop {\frac{x+4}{(x-5)^{10}}\geq(5-x)^{-10}};} \right. \ \left \{ {{x<4,} \atop {\frac{x+4}{(x-5)^{10}}\geq\frac{1}{(x-5)^{10}};} \right. \ \left \{ {{x<4,} \atop {x+4\geq1;} \right. \ \left \{ {{x<4,} \atop {x\geq-3;} \right. \ x\in[-3;4);" alt="\left \{ {{5-x>1,} \atop {\frac{x+4}{(x-5)^{10}}\geq(5-x)^{-10}};} \right. \ \left \{ {{x<4,} \atop {\frac{x+4}{(x-5)^{10}}\geq\frac{1}{(x-5)^{10}};} \right. \ \left \{ {{x<4,} \atop {x+4\geq1;} \right. \ \left \{ {{x<4,} \atop {x\geq-3;} \right. \ x\in[-3;4);" align="absmiddle" class="latex-formula">

x^3+8x^2+\frac{50x^2-x-7}{x-7}\leq1, \\ x^3+8x^2-1+\frac{50x^2-x-7}{x-7}\leq0, \\ \frac{(x^3+8x^2-1)(x-7)+50x^2-x-7}{x-7}\leq0, \\ \frac{x^4+x^3-6x^2}{x-7}\leq0, \\ \frac{x^2(x^2+x-6)}{x-7}\leq0, \\ x^2(x^2+x-6)(x-7)\leq0, \\ x^2(x^2+x-6)(x-7)=0, \\ x_1=0, \\ x^2+x-6=0, x_2=-3, x_3=2, \\ x-7=0, x_4=7, \\ (x+3)x^2(x-2)(x-7)\leq0, \\ x\in(-\infty;-3]\cup[2;7)\cup\{0\};

 

x\in[2;4)\cup\{0\}.

(93.5k баллов)