0,\\5-x\neq1,\\ \frac{x+4}{(x-5)^{10}}>0, \\(x-5)^{10}\neq0, \\ x-7\neq0; \end{cases} \ \begin{cases} x<5,\\x\neq4,\\ x>-4, \\x\neq5, \\ x\neq7; \end{cases} \ D=(-4;4)\cup(4;5), \\ [\tex]
[tex]\log_{5-x}\frac{x+4}{(x-5)^{10}}\geq-10, \\ \left \{ {{0<5-x<1,} \atop {\frac{x+4}{(x-5)^{10}}\leq(5-x)^{-10}};} \right. \ \left \{ {{4<x" alt="\begin{cases} 5-x>0,\\5-x\neq1,\\ \frac{x+4}{(x-5)^{10}}>0, \\(x-5)^{10}\neq0, \\ x-7\neq0; \end{cases} \ \begin{cases} x<5,\\x\neq4,\\ x>-4, \\x\neq5, \\ x\neq7; \end{cases} \ D=(-4;4)\cup(4;5), \\ [\tex]
[tex]\log_{5-x}\frac{x+4}{(x-5)^{10}}\geq-10, \\ \left \{ {{0<5-x<1,} \atop {\frac{x+4}{(x-5)^{10}}\leq(5-x)^{-10}};} \right. \ \left \{ {{4<x" align="absmiddle" class="latex-formula">
1,} \atop {\frac{x+4}{(x-5)^{10}}\geq(5-x)^{-10}};} \right. \ \left \{ {{x<4,} \atop {\frac{x+4}{(x-5)^{10}}\geq\frac{1}{(x-5)^{10}};} \right. \ \left \{ {{x<4,} \atop {x+4\geq1;} \right. \ \left \{ {{x<4,} \atop {x\geq-3;} \right. \ x\in[-3;4);" alt="\left \{ {{5-x>1,} \atop {\frac{x+4}{(x-5)^{10}}\geq(5-x)^{-10}};} \right. \ \left \{ {{x<4,} \atop {\frac{x+4}{(x-5)^{10}}\geq\frac{1}{(x-5)^{10}};} \right. \ \left \{ {{x<4,} \atop {x+4\geq1;} \right. \ \left \{ {{x<4,} \atop {x\geq-3;} \right. \ x\in[-3;4);" align="absmiddle" class="latex-formula">