Окружность, вписанная в прямоугольную трапецию, делит точкой большую боковую сторону **...

0 голосов
248 просмотров

Окружность, вписанная в прямоугольную трапецию, делит точкой большую боковую сторону на отрезки длиной 4 см и 25 см. Найдите высоту трапеции


Геометрия (1.2k баллов) | 248 просмотров
Дан 1 ответ
0 голосов

1.обзначим трапецию ABCD, где AD - большее основание.
2. теперь определяем, что высотой в данной трапеции является не только перпендикулярная сторона, но и диаметр вписанной окружности (О - ее центр, К - точка касания с AD, М - точка касания с CD), найдем его.
3. по свойству касательной к окружности отрезки касательных равны, т.е. KD=MD=4=r, а т.к. d(диаметр)=2r, то d(она же высота)=4*2=8.
ответ: 8 

(140 баллов)