Нужно найти производную функции:а)y=x(в шестой степени)б)y=2 в)y=5/x г)y=3-5x д)sinx/x...

0 голосов
20 просмотров

Нужно найти производную функции:а)y=x(в шестой степени)б)y=2 в)y=5/x г)y=3-5x д)sinx/x е)y=x ctg x


Алгебра (15 баллов) | 20 просмотров
0

y = 6x^5

0

y = 0

0

y = - 5/x^2

0

y = - 5

Дан 1 ответ
0 голосов
Правильный ответ

Решите задачу:

1) \ y=x^6\\
f'(x)=(x^6)'=6x^5\\\\
2) \ y=2\\
f'(2)=0\\\\
3)\ y= \frac{5}{x}\\\\
f'( \frac{5}{x})= \frac{5'\cdot x-5\cdot x'}{x^2}= \frac{0-5}{x^2} =- \frac{5}{x^2}\\\\
4)\ y=3-5x\\
f'(3-5x)=3'-(5x)'=0-5=-5\\\\
5)\ y= \frac{\sin x}{x} \\\\
f'( \frac{\sin x}{x})= \frac{(\sin x)'\cdot x-\sin x\cdot(x)'}{x^2}= \frac{x\cos x-\sin x}{x^2}\\\\
6)\ y=xctg x\\
f'(xctgx)=x'\cdot ctgx+x\cdot(ctgx)'=ctgx- \frac{x}{\sin^2x}
(29.3k баллов)