Радиус шара 15 см.Вне шара дана точка А ** расстояние 10 см от его поверхности.Найти...

0 голосов
50 просмотров

Радиус шара 15 см.Вне шара дана точка А на расстояние 10 см от его поверхности.Найти длину такой окружности на поверхности шара,все точки который отстает от А на 20см


Геометрия (15 баллов) | 50 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

 


Радиус шара 15 см.
Вне шара дана точка А на расстоянии 10 см от его поверхности.
Найти
длину такой окружности на поверхности шара, все точки которой отстают от А на 20 см

 

Расстояние измеряется перпендикуляром. А находится на отрезке прямой, перпендикулярной диаметру искомой окружности. 

Точка А от центра шара удалена на 15+10=25 см ( радиус + расстояние)


Все точки искомой окружности находятся на поверхности окружности основания воображаемого  конуса, "надетого" на шар.


Смотрим схематический рисунок - разрез шара через центр и точку А.
АО=15+10=25 см.
ОК=R
АК - расстояние, на которое должна быть удалена точка А от поверхности.
КМ- диаметр искомой окружности,

КН - ее радиус.
 
Имеем треугольник АКО со сторонами, отношение которых 3:4:5 - отношение прямоугольного "египетского" треугольника.


Радиус искомой окружности КН - высота этого треугольика.
Чтобы найти высоту, применим свойство катета прямоугольного треугольника:


Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом и высотой.


Пусть отрезок гипотенузы, заключенный между катетом и высотой,
ОН =х
Тогда
ОК ²=х*25
25х=225
х=9
Из треугольника КНО
КН²=КО²-ОН²= 225-81=144
КН=r=12 см

 
Длина окружности с радиусом 12 см


С=2πr= 2π12=24π cм


image
(228k баллов)