1) ![AB=\sqrt{(6+2)^2+(-2-4)^2}=10 AB=\sqrt{(6+2)^2+(-2-4)^2}=10](https://tex.z-dn.net/?f=AB%3D%5Csqrt%7B%286%2B2%29%5E2%2B%28-2-4%29%5E2%7D%3D10)
2) Составим уравнение АB:
![\frac{x+2}{6+2}=\frac{y-4}{-2-4} \\\ \frac{x+2}{8}=\frac{y-4}{-6} \\\ \frac{x+2}{4}=\frac{y-4}{-3} \\\ 3x+6=16-4y \\\ 3x+4y-10=0 \frac{x+2}{6+2}=\frac{y-4}{-2-4} \\\ \frac{x+2}{8}=\frac{y-4}{-6} \\\ \frac{x+2}{4}=\frac{y-4}{-3} \\\ 3x+6=16-4y \\\ 3x+4y-10=0](https://tex.z-dn.net/?f=%5Cfrac%7Bx%2B2%7D%7B6%2B2%7D%3D%5Cfrac%7By-4%7D%7B-2-4%7D+%5C%5C%5C+%5Cfrac%7Bx%2B2%7D%7B8%7D%3D%5Cfrac%7By-4%7D%7B-6%7D+%5C%5C%5C+%5Cfrac%7Bx%2B2%7D%7B4%7D%3D%5Cfrac%7By-4%7D%7B-3%7D+%5C%5C%5C+3x%2B6%3D16-4y+%5C%5C%5C+3x%2B4y-10%3D0)
Это требуемое уравнение. Коэффициент АВ ![K_{AB}=-\frac{3}{4} K_{AB}=-\frac{3}{4}](https://tex.z-dn.net/?f=K_%7BAB%7D%3D-%5Cfrac%7B3%7D%7B4%7D)
3) Составим уравнение ВС:
![\frac{x+2}{10}=\frac{y-4}{3} \\\ 3x+6=10y-40 \\\ 3x-10y+46=0 \frac{x+2}{10}=\frac{y-4}{3} \\\ 3x+6=10y-40 \\\ 3x-10y+46=0](https://tex.z-dn.net/?f=%5Cfrac%7Bx%2B2%7D%7B10%7D%3D%5Cfrac%7By-4%7D%7B3%7D+%5C%5C%5C+3x%2B6%3D10y-40+%5C%5C%5C+3x-10y%2B46%3D0)
Это требуемое уравнение. Коэффициент BC ![K_{BC}=\frac{3}{10} K_{BC}=\frac{3}{10}](https://tex.z-dn.net/?f=K_%7BBC%7D%3D%5Cfrac%7B3%7D%7B10%7D)
4) Пусть АМ-медиана. M- середина ВC
![M=(\frac{6+8}{2}; \ \frac{-2+7}{2})=(7; 2.5) M=(\frac{6+8}{2}; \ \frac{-2+7}{2})=(7; 2.5)](https://tex.z-dn.net/?f=M%3D%28%5Cfrac%7B6%2B8%7D%7B2%7D%3B+%5C+%5Cfrac%7B-2%2B7%7D%7B2%7D%29%3D%287%3B+2.5%29)
Составим уравнение AM:
![\frac{x+2}{7+2}=\frac{y-4}{2.5-4} \\\ x+2=-6y+24 \\\ x+6y-22=0 \frac{x+2}{7+2}=\frac{y-4}{2.5-4} \\\ x+2=-6y+24 \\\ x+6y-22=0](https://tex.z-dn.net/?f=%5Cfrac%7Bx%2B2%7D%7B7%2B2%7D%3D%5Cfrac%7By-4%7D%7B2.5-4%7D+%5C%5C%5C+x%2B2%3D-6y%2B24+%5C%5C%5C+x%2B6y-22%3D0)
Это требуемое уравнение.
5) Пусть BN-медиана. N- середина AC
![N=(\frac{-2+8}{2}; \ \frac{4+7}{2})=(3; 5.5) N=(\frac{-2+8}{2}; \ \frac{4+7}{2})=(3; 5.5)](https://tex.z-dn.net/?f=N%3D%28%5Cfrac%7B-2%2B8%7D%7B2%7D%3B+%5C+%5Cfrac%7B4%2B7%7D%7B2%7D%29%3D%283%3B+5.5%29)
Составим уравнение BN:
![\frac{x-6}{3-6}=\frac{y+2}{5.5+2} \\\ 15-2.5x=y+2 \\\ 5x+2y-26=0 \frac{x-6}{3-6}=\frac{y+2}{5.5+2} \\\ 15-2.5x=y+2 \\\ 5x+2y-26=0](https://tex.z-dn.net/?f=%5Cfrac%7Bx-6%7D%7B3-6%7D%3D%5Cfrac%7By%2B2%7D%7B5.5%2B2%7D+%5C%5C%5C+15-2.5x%3Dy%2B2+%5C%5C%5C+5x%2B2y-26%3D0)
Это требуемое уравнение.
6) Пусть СК-высота к стороне АВ.
Тогда СК и АВ взаимно перпендикулярны, причем
![K_{CK}*K_{AB}=-1, \\\ K_{CK}=\frac{-1}{K_{AB}}=\frac{4}{3} \\\ y=K_{CK}x+b \\\ y=\frac{4}{3}x+b \\\ A(-2; 4) \in y, \ \frac{4}{3}*(-2)+b=4 \\\ b=\frac{20}{3} \\\ y=\frac{4}{3}x+\frac{20}{3} \\\ 4x-3y+20=0 K_{CK}*K_{AB}=-1, \\\ K_{CK}=\frac{-1}{K_{AB}}=\frac{4}{3} \\\ y=K_{CK}x+b \\\ y=\frac{4}{3}x+b \\\ A(-2; 4) \in y, \ \frac{4}{3}*(-2)+b=4 \\\ b=\frac{20}{3} \\\ y=\frac{4}{3}x+\frac{20}{3} \\\ 4x-3y+20=0](https://tex.z-dn.net/?f=K_%7BCK%7D%2AK_%7BAB%7D%3D-1%2C+%5C%5C%5C+K_%7BCK%7D%3D%5Cfrac%7B-1%7D%7BK_%7BAB%7D%7D%3D%5Cfrac%7B4%7D%7B3%7D+%5C%5C%5C+y%3DK_%7BCK%7Dx%2Bb+%5C%5C%5C+y%3D%5Cfrac%7B4%7D%7B3%7Dx%2Bb+%5C%5C%5C+A%28-2%3B+4%29+%5Cin+y%2C+%5C+%5Cfrac%7B4%7D%7B3%7D%2A%28-2%29%2Bb%3D4+%5C%5C%5C+b%3D%5Cfrac%7B20%7D%7B3%7D+%5C%5C%5C+y%3D%5Cfrac%7B4%7D%7B3%7Dx%2B%5Cfrac%7B20%7D%7B3%7D+%5C%5C%5C+4x-3y%2B20%3D0)
Это уравнение высоты СК.
7) Площадь треугольника АВС
![S_{ABC}=б\frac{1}{2}*|AB \times AC|=б\frac{1}{2}*\left[\begin{array}{ccc}-2-8&4-7\\6-8&-2-7\end{array}\right]= \\\ =б\frac{1}{2}*\left[\begin{array}{ccc}-10&-3\\-2&-9\end{array}\right]=\frac{1}{2}*(90-6)=42 S_{ABC}=б\frac{1}{2}*|AB \times AC|=б\frac{1}{2}*\left[\begin{array}{ccc}-2-8&4-7\\6-8&-2-7\end{array}\right]= \\\ =б\frac{1}{2}*\left[\begin{array}{ccc}-10&-3\\-2&-9\end{array}\right]=\frac{1}{2}*(90-6)=42](https://tex.z-dn.net/?f=S_%7BABC%7D%3D%D0%B1%5Cfrac%7B1%7D%7B2%7D%2A%7CAB+%5Ctimes+AC%7C%3D%D0%B1%5Cfrac%7B1%7D%7B2%7D%2A%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2-8%264-7%5C%5C6-8%26-2-7%5Cend%7Barray%7D%5Cright%5D%3D+%5C%5C%5C+%3D%D0%B1%5Cfrac%7B1%7D%7B2%7D%2A%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-10%26-3%5C%5C-2%26-9%5Cend%7Barray%7D%5Cright%5D%3D%5Cfrac%7B1%7D%7B2%7D%2A%2890-6%29%3D42)
8) Пусть CF||AB, тогда
/
Это уравнение прямой CF||AB.