диагональ равнобокой трапеции перпендикулярна боковой стороне и образует с основание трапеции угол 30 градусов. Найти высоту трапеции около которой описана окружность, радиус которой равен r
Ответ r Т.к. диагональ образует прямой угол, то нижнее основание является диаметром окружности (прямой угол опирается на диаметр) и равно оно 2r . Сторона, лежащая против угла в 30гр равна половине гипотенузы - она же нижнее основание трапеции, равное 2r , те равна сторона r , тогда диагональ найдем по теореме Пифагора - равна r . теперь найдем площадь прямоугольного треугольника как половина произведения его катетов S=()/2 C другой стороны площадь этого треугольника можно найти как половина произведения основания на высоту, т.е. 2r *h. приравняем эти площади и находим h. h=(r)/2