0, x\in R, \\" alt="\frac{(7-x)(x^2-2x-35)}{x^3-49}\geq0, \\ x^3-49\neq0, x^3\neq49, x\neq\sqrt[3]{49}, \\ (7-x)(x^2-2x-35)=0, \\ 7-x=0, x=7, \\ x^2-2x-35=0, x_1=-5, x_2=7, \\ x^3-49=(x-\sqrt[3]{49})(x^2+x\sqrt[3]{49}+7\sqrt[3]{7}), \\ x^2-2x-35=(x+5)(x-7), \\ (7-x)(x+5)(x-7)(x-\sqrt[3]{49})(x^2+x\sqrt[3]{49}+7\sqrt[3]{7})\geq0,\\ -(x+5)(x-7)^2(x-\sqrt[3]{49})(x^2+x\sqrt[3]{49}+7\sqrt[3]{7})\geq0,\\ (x+5)(x-7)^2(x-\sqrt[3]{49})(x^2+x\sqrt[3]{49}+7\sqrt[3]{7})\leq0,\\ x^2+x\sqrt[3]{49}+7\sqrt[3]{7}>0, x\in R, \\" align="absmiddle" class="latex-formula">
max x=7