125*25^X - 70*10^X + 8*4^X = 0
125*5^2X - 70* 2^X*5^X + 8*2^2X = 0
Разделим обе части неравенства на 5^2x.
8*(2/5)^2x - 70*(2/5)^x + 125 = 0
Заменим (2/5)^x = z, (2/5)^2x = z^2
8z^2 - 70z + 125 = 0
D = b^2 - 4ac = (-70)^2 - 4*8*125 = 4900 - 4000 = 900 > 0
z_1 = (-b + VD)/2a = (70 + V900)/2*8 = ( 70 + 30)/16 = 100/16 = 25/4
z_2 = (-b - VD)/2a = (70 - 30)/16 = 40/16 = 5/2
1) (2/5)^x = 25/4, (2/5)^x = (2/5)^-2 ----> x_1 = -2
2) (2/5)^x = 5/2, (2/5)^x = (2/5)^(-1) ----> x_2 = -1
Ответ. -1; -2