Даны координаты вершин треугольника А(1;2), В(7;-6), С(-1;-12).
1) Найти уравнение стороны ВС, её нормальный вектор и угловой коэффициент
.
,
это уравнение в каноническом виде.
Знаменатели в этом уравнении - это координаты направляющего вектора: направляющий вектор
.
Чтобы найти
угловой коэффициент, надо уравнение из канонического вида преобразовать в уравнение с коэффициентом:
-6х + 42 = -8у - 48,
6х - 8у - 90 = 0 или, сократив на 2:
3х - 4у - 45 = 0 это общий вид уравнения.
Теперь выразим относительно у:
у = (3/4)х - (45/4) это уравнение с коэффициентом .
Угловой коэффициент уравнения стороны равен ВС 3/4.
Его можно определить по координатам точек:
Квс
= (Ус-Ув) / (Хс-Хв).
Если прямая задана общим уравнением
в прямоугольной системе координат, то вектор
является вектором нормали данной прямой.
Нормальный вектор (3;-4).
2) Найти точку пересечения медианы, опущенной из вершины А, и высоты, опущенной из вершины В.
Для этого надо найти уравнения этих прямых и решить полученную систему.
Находим координаты точки М (основание медианы АМ) как середину стороны ВС: М((7-1)/2=3; (-6-12)/2=-9.
Отсюда находим уравнение медианы АМ:
Находим уравнение высоты из точки В(7;-6) как перпендикуляра (нормали) к стороне АС.