Решение
f(x) = 2√x - 3ln(x+2)
f`(x) = 2/2√x - 3/(x + 2) = 1/√x - 3/(x + 2)
f`(x) = 0
1/√x - 3/(x + 2) = 0
(x + 2 - 3√x)/[√x(x + 2)] = 0
x + 2 - 3√x = 0,
√x(x + 2) ≠ 0, √x ≠ 0, x + 2 ≠ 0; x ≠ 0; x ≠ - 2
(√x)² - 3√x + 2 = 0
√x = t
t² - 3t + 2 = 0
t₁ = 1
t₂ = 2
1) √x = 1
(√x)² = 1²
x₁ = 1
2) √x = 2
(√x)² = 2²
x₂ = 4