В треугольнике ABC ∠С = 90°, ∠A = 60°, AB = 18см. Найдите AC.

0 голосов
65 просмотров

В треугольнике ABC ∠С = 90°, ∠A = 60°, AB = 18см. Найдите AC.


Геометрия (31 баллов) | 65 просмотров
Дан 1 ответ
0 голосов

Решаем задачи по геометрии

Элементы произвольного треугольника ABC обычно обозначаются так:
BC, CA, AB — стороны;
a, b, c — их длины;
α, β, γ — величины противолежащих углов;
ha, ma, la — высота, медиана и биссектриса, выходящие из вершины A;
R — радиус описанной окружности,
r — радиус вписанной окружности;
S — площадь,
p — полупериметр.
Отметим, что в отдельных задачах обозначения могут отличаться от стандартных.
Теорема 1 (теорема Пифагора). В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы, то есть
c2 = a2 + b2,
где c — гипотенуза треугольника.

Теорема 2. Для прямоугольного треугольника (рис. 1) верны следующие соотношения:
a = c cos β = c sin α = b tg α = b ctg β,



где c — гипотенуза треугольника.


Теорема 3. Пусть ca и cb — проекции катетов a и b прямоугольного треугольника на гипотенузу c, а h — высота этого треугольника, опущенная на гипотенузу (рис. 2). Тогда справедливы следующие равенства:
h2 = ca∙cb, a2 = c∙ca, b2 = c∙cb.



Теорема 4 (теорема косинусов). Для произвольного треугольника справедлива формула
a2 = b2 + c2 – 2bc cos α.

Теорема 5. Около всякого треугольника можно описать окружность и притом только одну. Центр этой окружности есть точка пересечения серединных перпендикуляров, проведенных к сторонам. Центр описанной окружности лежит внутри тре­угольника, если треугольник остроугольный; вне треугольника, если он тупоугольный; на середине гипотенузы, если он прямоугольный (рис. 3).



Теорема 6 (теорема синусов). Для произвольного треугольника (рис. 4) справедливы соотношения



Теорема 7. Во всякий треугольник можно вписать окружность и притом только одну (рис. 5).



Центр этой окружности есть точка пересечения биссектрис трех углов треугольника. Центр вписанной окружности лежит всегда внутри треугольника.

Теорема 8 (формулы для вычисления площади треугольника).

4

Последняя формула называется формулой Герона.

Теорема 9 (теорема о биссектрисе внутреннего угла).


Биссектриса внутреннего угла треугольника (рис. 6) делит противоположную сторону на части, пропорциональные прилежащим сторонам треугольника, то есть
b : c = x : y.

Теорема 10 (формула для вычисления длины биссектрисы) (см. рис. 6)


.

Теорема 11 (формула для вычисления длины биссектрисы).


Теорема 12. Медианы треугольника пересекаются в одной точке и делятся в этой точке на отрезки, длины которых относятся как 2 : 1, считая от вершины (рис. 7).



Теорема 13 (формула для вычисления длины медианы).

Доказательства некоторых теорем

Доказательство теоремы 10. Построим треугольник ABC и проведем в нем биссектрису AD (рис. 8). Пусть CD = x и DB = y. Применим к треугольникам ABD и ACD теорему косинусов:




BD2 = AB2 + AD2 – 2∙AB∙AD∙cos ∠BAD;
CD2 = AC2 + AD2 – 2∙AC∙AD∙cos ∠CAD.
Или, что то же самое,


Выразим из каждого неравенства и приравняем полученные результаты:



Применив теперь к треугольнику ABC теорему о биссектрисе внутреннего угла, получим, что

(50 баллов)
0

AC - катет, лежащий против угла в 30⁰
АС = АВ/2 = 9 (см) вот краткий ответ