1) 1 / ( x - 1 ) - 1 / ( x + 1 ) = ( x + 1 - x + 1 )) / ( x² - 1 ) = 2 / ( x² - 1 )
2) ( 2 / ( x² - 1 )) - 1 = ( 2 - x² + 1 ) / ( x² - 1 ) = ( 3 - x² ) / ( x² - 1 )
3) ( x² - 1 ) * ( ( 3 - x² ) / ( x² - 1 )) = ( 3 - x² )
Ответ ( 3 - х² )
------------------------
1) m + 1 + ( 1 / ( m - 1 )) = ( m( m - 1 ) + m - 1 + 1 )) / ( m - 1 ) =
= ( m² - m + m ) / ( m - 1 ) = m² / ( m - 1 )
2) m - ( m² / ( m - 1 )) = ( m( m - 1 ) - m² ) / ( m - 1 ) = ( m² - m - m² ) / ( m - 1 ) =
= ( - m ) / ( m - 1 )
3) ( m² / ( m - 1 )) : ( ( - m ) / ( m - 1 )) = m / ( - 1 ) = - m
Ответ ( - m )