Найти f '(x) и f '(x^0), если А) f(x)= 3x^5-12x^2+6x+2, x^0=1 Б)f(x)=xsinx, x^0=П/2

0 голосов
530 просмотров

Найти f '(x) и f '(x^0), если
А) f(x)= 3x^5-12x^2+6x+2, x^0=1
Б)f(x)=xsinx, x^0=П/2


Алгебра (15 баллов) | 530 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

А) f(x)= 3x^5-12x^2+6x+2, x0=1
    f `(x)=15x^4-24x+6    f `(x0)=f `(1)=15*1^4-24*1+6=15-24+6=-3

Б)f(x)=xsinx, x0=П/2
   f `(x)=sinx+xcosx   f `(x0)=f `(П/2)=sin(П/2)+П/2cos(П/2)=1+П/2 *0=1+0=1

(237k баллов)