Точка дотику кола, вписаного в прямокутний трикутник, ділить один із його катетів на відрізки 2 см і 8 см, рахуючи від вершини прямого кута. Знайдіть сторони трикутника. ❤️
Центр вписанной окружности - это точка пересечения биссектрис. Тангенс угла β (в синем треугольнике) tg(β) = 2/8 = 1/4 По формуле тангенса двойного угла tg(2β) = 2*tg(β)/(1-tg²(β)) tg(2β) = 2*1/4/(1-1/16) = 2*16/4/15 = 8/15 --- Первый катет a = 2+8 = 10 см Второй катет b/a = tg(2β) b = a*tg(2β) = 10*8/15 = 16/3 = 5 1/3 см гипотенуза с = √(a² + b²) = √(100 + 256/9) = 1/3*√(900 + 256) = 1/3*√1156 = 34/3 = 11 1/3 см