M^(-6)-27*27 *m^2. 9m^2(1+3m) _____________________+ _________...

0 голосов
56 просмотров

M^(-6)-27*27 *m^2. 9m^2(1+3m)
_____________________+ _________
(9-6/m+1/m^2)(9+3/m+1/m^2). (3m-1)


Ответ:3m+1


Алгебра (136 баллов) | 56 просмотров
0

((m^(-6)-27*27) *m^2)/((9-6/m+1/m^2)(9+3/m+1/m^2))+ 9m^2(3m+1)/ (3m-1)

Дан 1 ответ
0 голосов

Решите задачу:

\frac{( m^{-6} -27*27)*m^2}{(9- \frac{6}{m}+ \frac{1}{m^2} )(9+ \frac{3}{m} + \frac{1}{m^2} ) } + \frac{9m^2(1+3m)}{3m-1} = \\ \\ \frac{ \frac{1}{m^4}-(27m)^2 }{ \frac{9m^2-6m+1}{m^2}* \frac{9m^2+3m+1}{m^2} } +\frac{9m^2(1+3m)}{3m-1} = \\ \\ \frac{( \frac{1}{m^2}-27m)( \frac{1}{m^2}+27m) }{ \frac{(3m-1)^2(9m^2+3m+1)}{m^4} } +\frac{9m^2(1+3m)}{3m-1} = \\ \\ \frac{ \frac{(1-27m^3)(1+27m^3)}{m^4} }{ \frac{(3m-1)^2(9m^2+3m+1)}{m^4} } +\frac{9m^2(1+3m)}{3m-1} = \\ \\
\frac{(1-3m)(1+3m+9m^2)(1+3m)(1-3m+9m^2)}{(3m-1)^2(9m^2+3m+1)} +\frac{9m^2(1+3m)}{3m-1} = \\ \\ \frac{-(1+3m)(1-3m+9m^2)}{3m-1} +\frac{9m^2(1+3m)}{3m-1} = \\ \\ \frac{(1+3m)(9m^2-1+3m-9m^2)}{3m-1} = \frac{(1+3m)(3m-1)}{3m-1} =3m+1
(26.0k баллов)