Решите уравнение логарифмы

0 голосов
45 просмотров

Решите уравнение логарифмы


image

Алгебра (63 баллов) | 45 просмотров
0

1/100

Дано ответов: 2
0 голосов
Правильный ответ

Одз: x>0
2 lg lgx = lg(3-2lgx)

lg (lgx)²= lg(3-2lgx)

lg²x = 3-2lgx

lg²x + 2lgx - 3 = 0

Введем замену lgx = t

t² + 2t - 3 = 0

D = 4 - 4*1*(-3) = 16

t1 = (-2+4)/2 = 1

t2 = (-2-4)/2 = -3

Вернемся к замене:

lgx = 1

x = 10

lgx = -3

x = 10⁻³ = 1/1000

10* 1/1000 = 1/100

(41.5k баллов)
0

loga(b) = c, с может быть отрицательным

0

b нет

0

Всё верно

0

У меня положительные иксы все

0

Не знаете -- не лезьте.

0

А, понял.

0

Извините.

0

Умник здесь изначально ОДЗ: lg(x)>0 и 3-2lg(x)>0....Это ты не учёл??????

0

Я уже осознал и извинился.

0

...

0 голосов

Ответ:..................................


image
(6.9k баллов)
0

Почему lgx>0?

0

это неверная запись

0

10^(-3) = 1/1000, почему нет?

0

loga(b)=c одз>0
lga=c одз a>0 в первой строке lgx является a для 2lglgx и поэтому согласно одз должен быть >0

0

А, сорян