вокружностисцентромОпроведеныдвехордыMNиPQ, приэтомдугаPQ+дугаMN=180градусов....

0 голосов
18 просмотров

вокружностисцентромОпроведеныдвехордыMNиPQ, приэтомдугаPQ+дугаMN=180градусов. НахордуMNопущенперпендикуляр ОН, на хорду PQ опущен перпендикуляр АН1. Докажите, что PQ=2OH


Геометрия (15 баллов) | 18 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Поскольку расстояния до хорд одинаковой длины в окружности равны (вообще, d^ + (h/2)^ = R^2; где d - расстояние до хорды, h - ее длина), то БЕЗ ПОТЕРИ ОБЩНОСТИ можно свести концы дуг(хорд), то есть считать, что точки N и Р совпадают, а треугольник MP(N)Q - прямоугольный. В самом деле, равной дуге соответствует равная хорда, => и расстояние до неё такое же.

В треугольнике MPQ ОН средняя линяя (раз треугольник прямоугольный - ОН II PQ, и О - середина MQ), поэтому ОН = PQ/2;

 

Можно всё это рассказывать и "с конца" :)) от точки P отложим дугу (а значит, и хорду), равную MN, конец обозначим за M1. Далее по тексту, доказывается, что ОН1 (перпендикуляр на РМ1) равен PQ/2; но ОН1 = ОН (в начале есть формула связи длины хорды и расстояния до нее:)), чтд. 

 

Оба решения совершенно одинаковы, но отличаются противоположным порядком изложения :)))

(69.9k баллов)