Петя, Володя и Коля совершили дерзкий набег ** чужой сад, так что у Пети за пазухой...

0 голосов
43 просмотров

Петя, Володя и Коля совершили дерзкий набег на чужой сад, так что у Пети за пазухой оказалось в целое число раз больше яблок, чем у Володи, а у Коли во столько же раз больше, чем у Пети. Затем Петя и Коля отдали Володе по 2 яблока, после чего полученное количество яблок у ребят составило арифметическую прогрессию.Сколько яблок было у ребят первоначально после набега? В ответе указать сумму всех похищенных яблок.
Заранее спасибо.


Алгебра (125 баллов) | 43 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Пусть у Володи было х яблок, тогда у Пети: kx, k - целое число. У Коли было: k*(kx) = x*k^2
Петя отдал 2 яблока Володе, у него осталось: kx - 2
Коля отдал 2 яблока Володе, у него осталось: (xk^2) - 2
У Володи стало: x + 4
Получилась арифметическая прогрессия: kx - 2, x + 4, xk^2 - 2.
Если это так, то по свойству арифметической прогрессии разность между следующим и предыдущим членом одинакова, а именно:
(x + 4) - (kx - 2) = (xk^2 - 2) - (x + 4)
x + 4 - kx + 2 = xk^2 - 2 - x - 4
xk^2 - x - 6 - x - 6 + kx = 0
x*(k^2 + k - 2) = 12
x = 12/(k^2 + k - 2) - целое число
12 делится нацело на: 2, 3, 4, 6, 12
Перебираем возможные варианты k:
k^2 + k - 2 ≠ 0, k ≠ 1, k ≠ -2
k^2 + k - 2 = 2, k^2 + k - 4 = 0, D = 1 + 16 = 17 - нет целого квадратного корня, значит нет целых корней.
k^2 + k - 2 = 3, k^2 + k - 5 = 0, D = 1 + 20 = 21 - нет целого квадратного корня, значит нет целых корней.
k^2 + k - 2 = 4, k^2 + k - 6 = 0, D = 1 + 24 = 25
k1 = (-1 - 5)/2 = -3 < 0, k2 = (-1 + 5)/2 = 4/2 = 2
k^2 + k - 2 = 6, k^2 + k - 8 = 0, D = 1 + 32 = 33 - нет целого квадратного корня, значит нет целых корней.
k^2 + k - 2 = 12, k^2 + k - 14 = 0, D = 1 + 56 = 57 - нет целого квадратного корня, значит нет целых корней.
Выяснили, что k=2
Значит x = 12/(4 + 2 - 2) = 3
У Володи было 3 яблока, у Пети в 2 раза больше, чем у Володи - 6 яблок, у Коли в 2 раза больше, чем у Пети - 12 яблок. Всего: 3 + 6 + 12 = 21 яблоко

(63.2k баллов)