Сумма n-первых членов геометрической прогрессии:
![S_n=\dfrac{b_1(1-q^n)}{1-q} S_n=\dfrac{b_1(1-q^n)}{1-q}](https://tex.z-dn.net/?f=S_n%3D%5Cdfrac%7Bb_1%281-q%5En%29%7D%7B1-q%7D)
Воспользовавшись выше формулу, составим систему уравнений:
![\displaystyle \left \{ {{\dfrac{b_1(1-q^2)}{1-q}=4} \atop {\dfrac{b_1(1-q^3)}{1-q}=13}} \right.~\Rightarrow~\left \{ {{\dfrac{b_1(1-q)(1+q)}{1-q}=4} \atop {\dfrac{b_1(1-q)(1+q+q^2)}{1-q}=13}} \right.~\Rightarrow~\left \{ {{b_1(1+q)=4} \atop {b_1(1+q+q^2)=13}} \right.\\ \\ \\ \Rightarrow~~~\left \{ {{b_1(1+q)=4} \atop {b_1(1+q)+b_1q^2=13}} \right.~~~\Rightarrow~~\left \{ {{b_1(1+q)=4} \atop {4+b_1q^2=13}} \right.~~\Rightarrow~~\left \{ {{b_1(1+q)=4} \atop {b_1q^2=9}} \right. \displaystyle \left \{ {{\dfrac{b_1(1-q^2)}{1-q}=4} \atop {\dfrac{b_1(1-q^3)}{1-q}=13}} \right.~\Rightarrow~\left \{ {{\dfrac{b_1(1-q)(1+q)}{1-q}=4} \atop {\dfrac{b_1(1-q)(1+q+q^2)}{1-q}=13}} \right.~\Rightarrow~\left \{ {{b_1(1+q)=4} \atop {b_1(1+q+q^2)=13}} \right.\\ \\ \\ \Rightarrow~~~\left \{ {{b_1(1+q)=4} \atop {b_1(1+q)+b_1q^2=13}} \right.~~~\Rightarrow~~\left \{ {{b_1(1+q)=4} \atop {4+b_1q^2=13}} \right.~~\Rightarrow~~\left \{ {{b_1(1+q)=4} \atop {b_1q^2=9}} \right.](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cleft%20%5C%7B%20%7B%7B%5Cdfrac%7Bb_1%281-q%5E2%29%7D%7B1-q%7D%3D4%7D%20%5Catop%20%7B%5Cdfrac%7Bb_1%281-q%5E3%29%7D%7B1-q%7D%3D13%7D%7D%20%5Cright.~%5CRightarrow~%5Cleft%20%5C%7B%20%7B%7B%5Cdfrac%7Bb_1%281-q%29%281%2Bq%29%7D%7B1-q%7D%3D4%7D%20%5Catop%20%7B%5Cdfrac%7Bb_1%281-q%29%281%2Bq%2Bq%5E2%29%7D%7B1-q%7D%3D13%7D%7D%20%5Cright.~%5CRightarrow~%5Cleft%20%5C%7B%20%7B%7Bb_1%281%2Bq%29%3D4%7D%20%5Catop%20%7Bb_1%281%2Bq%2Bq%5E2%29%3D13%7D%7D%20%5Cright.%5C%5C%20%5C%5C%20%5C%5C%20%5CRightarrow~~~%5Cleft%20%5C%7B%20%7B%7Bb_1%281%2Bq%29%3D4%7D%20%5Catop%20%7Bb_1%281%2Bq%29%2Bb_1q%5E2%3D13%7D%7D%20%5Cright.~~~%5CRightarrow~~%5Cleft%20%5C%7B%20%7B%7Bb_1%281%2Bq%29%3D4%7D%20%5Catop%20%7B4%2Bb_1q%5E2%3D13%7D%7D%20%5Cright.~~%5CRightarrow~~%5Cleft%20%5C%7B%20%7B%7Bb_1%281%2Bq%29%3D4%7D%20%5Catop%20%7Bb_1q%5E2%3D9%7D%7D%20%5Cright.)
Из первого уравнения выразим b1:
и подставляем во второе уравнение
![\dfrac{4}{1+q}\cdot q^2=9~~\Rightarrow~~~ 4q^2=9q+9~~\Rightarrow~~ 4q^2-9q-9=0\\ \\ D=(-9)^2-4\cdot4\cdot(-9)=81+144=225;~~~\sqrt{D}=15 \dfrac{4}{1+q}\cdot q^2=9~~\Rightarrow~~~ 4q^2=9q+9~~\Rightarrow~~ 4q^2-9q-9=0\\ \\ D=(-9)^2-4\cdot4\cdot(-9)=81+144=225;~~~\sqrt{D}=15](https://tex.z-dn.net/?f=%5Cdfrac%7B4%7D%7B1%2Bq%7D%5Ccdot%20q%5E2%3D9~~%5CRightarrow~~~%204q%5E2%3D9q%2B9~~%5CRightarrow~~%204q%5E2-9q-9%3D0%5C%5C%20%5C%5C%20D%3D%28-9%29%5E2-4%5Ccdot4%5Ccdot%28-9%29%3D81%2B144%3D225%3B~~~%5Csqrt%7BD%7D%3D15)
![q_1=\dfrac{9-15}{2\cdot4}=-\dfrac{3}{4};~~~~ b_1=16\\ \\ q_2=\dfrac{9+15}{2\cdot4}=3;~~~~ b_1=1 q_1=\dfrac{9-15}{2\cdot4}=-\dfrac{3}{4};~~~~ b_1=16\\ \\ q_2=\dfrac{9+15}{2\cdot4}=3;~~~~ b_1=1](https://tex.z-dn.net/?f=q_1%3D%5Cdfrac%7B9-15%7D%7B2%5Ccdot4%7D%3D-%5Cdfrac%7B3%7D%7B4%7D%3B~~~~%20b_1%3D16%5C%5C%20%5C%5C%20q_2%3D%5Cdfrac%7B9%2B15%7D%7B2%5Ccdot4%7D%3D3%3B~~~~%20b_1%3D1)
Имеем два случая. Найдем сумму первых 5 членов этой прогрессии
![S_5=\dfrac{b_1(1-q^5)}{1-q}=\dfrac{16\left(1-\left(-\frac{3}{4}\right)^5\right)}{1-\left(-\frac{3}{4}\right)}=\dfrac{181}{16}\\ \\ \\ S_5=\dfrac{b_1(1-q^5)}{1-q}=\dfrac{1\cdot\left(1-3^5\right)}{1-3}=121 S_5=\dfrac{b_1(1-q^5)}{1-q}=\dfrac{16\left(1-\left(-\frac{3}{4}\right)^5\right)}{1-\left(-\frac{3}{4}\right)}=\dfrac{181}{16}\\ \\ \\ S_5=\dfrac{b_1(1-q^5)}{1-q}=\dfrac{1\cdot\left(1-3^5\right)}{1-3}=121](https://tex.z-dn.net/?f=S_5%3D%5Cdfrac%7Bb_1%281-q%5E5%29%7D%7B1-q%7D%3D%5Cdfrac%7B16%5Cleft%281-%5Cleft%28-%5Cfrac%7B3%7D%7B4%7D%5Cright%29%5E5%5Cright%29%7D%7B1-%5Cleft%28-%5Cfrac%7B3%7D%7B4%7D%5Cright%29%7D%3D%5Cdfrac%7B181%7D%7B16%7D%5C%5C%20%5C%5C%20%5C%5C%20S_5%3D%5Cdfrac%7Bb_1%281-q%5E5%29%7D%7B1-q%7D%3D%5Cdfrac%7B1%5Ccdot%5Cleft%281-3%5E5%5Cright%29%7D%7B1-3%7D%3D121)
Два варианта ответов в вашем случае.