Для того чтобы определить угол между биссектриссой и высотой необходимо визуально нарисовать исходный треугольник ABC.
Сначала проведём биссектрису угла B и обозначим её как ВТ. Из свойств биссектрисы известно, что она делит угол пополам, следовательно мы получили два угла ABT=TBC=25°
Теперь проводим высоту из угла В на сторону АС, обозначим её как ВН. Известно что угол AHB равен 90° , т.к. высота проведенная из точки перпендикулярна стороне.
Т.к. сумма углов треугольника АВН равна 180°, найдём угол АВН.
АВН=180°-уголА - 90°=10°
Тогда зная углы АВН и АВТ легко найдём искомый угол НВТ,
уг.АВТ-уг.АВН=25°-10°=15°
Ответ:15°