![cosa=\dfrac{1}{2\sqrt2}=\dfrac{1}{\sqrt8}\\\\cos5a=cos(3a+2a)=cos3a\cdot cos2a-sin3a\cdot sin2a=\\\\=(4cos^3a-3cosa)(2cos^2a-1)-(3sina-4sin^3a)\cdot 2\, sina\cdot cosa=\\\\=8cos^5a-10cos^3a+3cosa-6sin^2a\cdot cosa+8sin^4a\cdot cosa\; ;\\\\sin^2a=1-cos^2a=1-\Big(\dfrac{1}{2\sqrt2}\Big)^2=1-\dfrac{1}{8}=\dfrac{7}{8}\; ;\\\\sin^4a=(sin^2a)^2=\Big(\dfrac{7}{8}\Big)^2=\dfrac{49}{64}\; ; cosa=\dfrac{1}{2\sqrt2}=\dfrac{1}{\sqrt8}\\\\cos5a=cos(3a+2a)=cos3a\cdot cos2a-sin3a\cdot sin2a=\\\\=(4cos^3a-3cosa)(2cos^2a-1)-(3sina-4sin^3a)\cdot 2\, sina\cdot cosa=\\\\=8cos^5a-10cos^3a+3cosa-6sin^2a\cdot cosa+8sin^4a\cdot cosa\; ;\\\\sin^2a=1-cos^2a=1-\Big(\dfrac{1}{2\sqrt2}\Big)^2=1-\dfrac{1}{8}=\dfrac{7}{8}\; ;\\\\sin^4a=(sin^2a)^2=\Big(\dfrac{7}{8}\Big)^2=\dfrac{49}{64}\; ;](https://tex.z-dn.net/?f=cosa%3D%5Cdfrac%7B1%7D%7B2%5Csqrt2%7D%3D%5Cdfrac%7B1%7D%7B%5Csqrt8%7D%5C%5C%5C%5Ccos5a%3Dcos%283a%2B2a%29%3Dcos3a%5Ccdot%20cos2a-sin3a%5Ccdot%20sin2a%3D%5C%5C%5C%5C%3D%284cos%5E3a-3cosa%29%282cos%5E2a-1%29-%283sina-4sin%5E3a%29%5Ccdot%202%5C%2C%20sina%5Ccdot%20cosa%3D%5C%5C%5C%5C%3D8cos%5E5a-10cos%5E3a%2B3cosa-6sin%5E2a%5Ccdot%20cosa%2B8sin%5E4a%5Ccdot%20cosa%5C%3B%20%3B%5C%5C%5C%5Csin%5E2a%3D1-cos%5E2a%3D1-%5CBig%28%5Cdfrac%7B1%7D%7B2%5Csqrt2%7D%5CBig%29%5E2%3D1-%5Cdfrac%7B1%7D%7B8%7D%3D%5Cdfrac%7B7%7D%7B8%7D%5C%3B%20%3B%5C%5C%5C%5Csin%5E4a%3D%28sin%5E2a%29%5E2%3D%5CBig%28%5Cdfrac%7B7%7D%7B8%7D%5CBig%29%5E2%3D%5Cdfrac%7B49%7D%7B64%7D%5C%3B%20%3B)
![cos5a=8\cdot \Big(\dfrac{1}{\sqrt8}\Big)^5-10\cdot \Big(\dfrac{1}{\sqrt8}\Big)^3+3\cdot \dfrac{1}{\sqrt8}-6\cdot \dfrac{7}{8}\cdot \dfrac{1}{\sqrt8}+8\cdot \dfrac{49}{64}\cdot \dfrac{1}{\sqrt8}=\\\\\\=\dfrac{8}{8^2\sqrt8}-\dfrac{10}{8\sqrt8}+\dfrac{3}{\sqrt8}-\dfrac{21}{4\sqrt8}+\dfrac{49}{8\sqrt8}=\dfrac{1}{8\sqrt8}-\dfrac{10}{8\sqrt8}+\dfrac{3}{\sqrt8}-\dfrac{21}{4\sqrt8}+\dfrac{49}{8\sqrt8}=\\\\\\=\dfrac{1-10+24-42+49}{8\sqrt8}=\dfrac{22}{8\sqrt8}=\dfrac{11}{4\sqrt8} cos5a=8\cdot \Big(\dfrac{1}{\sqrt8}\Big)^5-10\cdot \Big(\dfrac{1}{\sqrt8}\Big)^3+3\cdot \dfrac{1}{\sqrt8}-6\cdot \dfrac{7}{8}\cdot \dfrac{1}{\sqrt8}+8\cdot \dfrac{49}{64}\cdot \dfrac{1}{\sqrt8}=\\\\\\=\dfrac{8}{8^2\sqrt8}-\dfrac{10}{8\sqrt8}+\dfrac{3}{\sqrt8}-\dfrac{21}{4\sqrt8}+\dfrac{49}{8\sqrt8}=\dfrac{1}{8\sqrt8}-\dfrac{10}{8\sqrt8}+\dfrac{3}{\sqrt8}-\dfrac{21}{4\sqrt8}+\dfrac{49}{8\sqrt8}=\\\\\\=\dfrac{1-10+24-42+49}{8\sqrt8}=\dfrac{22}{8\sqrt8}=\dfrac{11}{4\sqrt8}](https://tex.z-dn.net/?f=cos5a%3D8%5Ccdot%20%5CBig%28%5Cdfrac%7B1%7D%7B%5Csqrt8%7D%5CBig%29%5E5-10%5Ccdot%20%5CBig%28%5Cdfrac%7B1%7D%7B%5Csqrt8%7D%5CBig%29%5E3%2B3%5Ccdot%20%5Cdfrac%7B1%7D%7B%5Csqrt8%7D-6%5Ccdot%20%5Cdfrac%7B7%7D%7B8%7D%5Ccdot%20%5Cdfrac%7B1%7D%7B%5Csqrt8%7D%2B8%5Ccdot%20%5Cdfrac%7B49%7D%7B64%7D%5Ccdot%20%5Cdfrac%7B1%7D%7B%5Csqrt8%7D%3D%5C%5C%5C%5C%5C%5C%3D%5Cdfrac%7B8%7D%7B8%5E2%5Csqrt8%7D-%5Cdfrac%7B10%7D%7B8%5Csqrt8%7D%2B%5Cdfrac%7B3%7D%7B%5Csqrt8%7D-%5Cdfrac%7B21%7D%7B4%5Csqrt8%7D%2B%5Cdfrac%7B49%7D%7B8%5Csqrt8%7D%3D%5Cdfrac%7B1%7D%7B8%5Csqrt8%7D-%5Cdfrac%7B10%7D%7B8%5Csqrt8%7D%2B%5Cdfrac%7B3%7D%7B%5Csqrt8%7D-%5Cdfrac%7B21%7D%7B4%5Csqrt8%7D%2B%5Cdfrac%7B49%7D%7B8%5Csqrt8%7D%3D%5C%5C%5C%5C%5C%5C%3D%5Cdfrac%7B1-10%2B24-42%2B49%7D%7B8%5Csqrt8%7D%3D%5Cdfrac%7B22%7D%7B8%5Csqrt8%7D%3D%5Cdfrac%7B11%7D%7B4%5Csqrt8%7D)
![\cos5a-cosa=\dfrac{11}{4\sqrt8}-\dfrac{1}{\sqrt8}=\dfrac{11-4}{4\sqrt8}=\dfrac{7}{4\sqrt8}=\dfrac{7}{8\sqrt2} \cos5a-cosa=\dfrac{11}{4\sqrt8}-\dfrac{1}{\sqrt8}=\dfrac{11-4}{4\sqrt8}=\dfrac{7}{4\sqrt8}=\dfrac{7}{8\sqrt2}](https://tex.z-dn.net/?f=%5Ccos5a-cosa%3D%5Cdfrac%7B11%7D%7B4%5Csqrt8%7D-%5Cdfrac%7B1%7D%7B%5Csqrt8%7D%3D%5Cdfrac%7B11-4%7D%7B4%5Csqrt8%7D%3D%5Cdfrac%7B7%7D%7B4%5Csqrt8%7D%3D%5Cdfrac%7B7%7D%7B8%5Csqrt2%7D)
P.S. Можно было воспользоваться формулой разности косинусов, но тогда при вычислении нужно было бы вычислять sinα и sin3α , для которых надо было определять , в какой четверти находится угол α . А если этого не определять,то было бы два случая, когда sinα>0 и когда sinα<0, что дольше решать... Функции же sin²α≥0 и sin⁴α≥0 при любом α .</p>