Допустим первое условие ложно, тогда истинны остальные, если три стороны трапеции равны х, а четвертая у, то ее периметр равен
3х+у=56, 3х больше на 28, чем у, поэтому у=3х-28, 3х+3х-28=56; 6х=84, тогда равные стороны х=84/6=14, четвертая сторона 3*14-28=14. Стало быть, первое условие отбрасывать нельзя, т.к. получили квадрат.
Если же отбросить второе условие, то у квадрата все стороны равны и его периметр равен 4х=56, х=14, четвертое условие сохранено, и, значит, площадь квадрата равна 14²=196