Пусть Р равнобедренного треугольника=в+2а, где в- основание, а-бедро(боковая сторона)треугольника, тогда по условию 18=8+2а
2а=18-8
2а=10
а=10:2 а=5 см
Для нахождения площади треугольника Применим теорему Пифагора
Поскольку высота треугольника делит основание пополам, то длина половины основания будет равна 8 / 2 = 4 см
Высота с половиной основания и стороной равнобедренного треугольника образует прямоугольный треугольник. Соответственно, высота основания будет равна:
h = √ 5^2 - 4^2 = √9 = 3 см
Площадь равнобедренного треугольника будет равна площади двух прямоугольных треугольников, образованных боковыми сторонами, высотой и половинами основания равнобедренного треугольника. Применив формулу площади прямоугольного треугольника, получим:
S = 4 * 3/ 2 = 6 см2
Поскольку прямоугольных треугольников два, то общая площадь равнобедренного треугольника составит:
6 * 2 =12 см2