0,04^x - 2·0,2^x < 15</span>
0,2^2x - 2·0,2^x < 15<br>Замена
0,2^x = t
t² - 2 t - 15 < 0<br>t² - 2 t - 15=0
D = 4 + 4*15 = 64
t1 = (2 + 8)/ 2 = 5 t2 = ( 2 - 8)/ 2 = -3
///////////////////////////////////
__________-3___________________5_____________
t ∈ ( -3 ; 5 ) => 0,2^x ∈ ( -3 ; 5 )
Но т.к. значение степени 0,2^x не может быть отрицательным =>
0,2^x ∈ ( 0 ; 5 )
0,2^x → 0 при x → + ОО
0,2^x = 5
1/5^x = 5
5^(-x) = 5^1
-x = 1
х = -1
Ответ: х ∈ ( -1 ; + оо )