Площадь равнобедренной трапеции ABCD с основаниями ВС и АD , описанной около окружности с...

0 голосов
75 просмотров

Площадь равнобедренной трапеции ABCD с основаниями ВС и АD , описанной около окружности с центром О и радиусом 3 см , равна 60 см в кв . Найдите радиус окружности , описанной около треугольника OCD .


Геометрия (14 баллов) | 75 просмотров
Дан 1 ответ
0 голосов

Очевидно, что высота трапеции h=2r=2*3=6
Площадь трапеции S=(a+b)*h/2
60=(a+b)*6/2
(a+b)/2=10     (1)
Треугольники MOC и OCE прямоугольные с общей гипотенузой. Следовательно, они равны между собой
CE=MC=a/2
Треугольники OED и OND прямоугольные с общей гипотенузой. Следовательно, они равны между собой
ED=ND=b/2
CD=CE+ED=a/2+b/2=(a+b)/2=10
Площадь треугольника COD равна 1/2CD*EO=1/2*10*3=15
Треугольник CPD прямоугольный, по т.Пифагора
PD²=CD²-CP²=10²-6²=64
PD=8
С другой стороны
PD=b/2-a/2
b/2=PD+a/2
b/2=8+a/2
b=16+a
Подставляя в (1) найдем a
(a+16+a)=20
2a=20-16
2a=4
a=2
b=16+2=18
Рассматривая прямоугольные треугольники OCE и OED по т.Пифагора находим
OE=√(3²+(a/2)²)=√(9+1)=√10
OD=√(3²+(b/2)³)=√(9+81)=√90=3√10
Cтороны треугольника CPD найдены
Площадь треугольника и его радиус описанной окружности связаны формулой
S=OE·OD·CD/(4R)
R=OE·OD·CD/(4S)
R=√10·3√10·10/(4·15)=300/60=5
Ответ: 5 см


image
0

а можно чертежь к этой задачи. За решение спасибо огромное)

0

Странно, чертеж я с самого начала прикрепил. Ты его не видишь?