Из точки, находящейся на расстоянии 24 см от плоскости, проведены к ней две наклонные, угол между которыми 90°. Проекции этих наклонных на плоскость равны 18 см и 32 см. Найдите расстояние между основаниями наклонных.
Обозначим точку С, наклонные пусть будут СА и СВ, а основание перпендикуляра,проведенного из С к плоскости - Н.
Так как расстояние от точки до плоскости измеряется длиной перпендикулярного к ней отрезка, треугольники АСН и ВСН - прямоугольные.
По т.Пифагора найдем АС²:
АС²=АН²+СН²=324+576=900
ВС²=ВН²+СН²=1024+576=1600
Треугольник АСВ - прямоугольный по условию ( угол между наклонными 90°
Его гипотенуза АВ и есть искомое расстояние.
АВ²=АС²+ВС²=900+1600=2500
АВ=50 см