![image](https://tex.z-dn.net/?f=x%5E%7B16%7D-x%5E%7B12%7D%2Bx%5E8-x%2B1%3E0)
0" alt="x^{16}-x^{12}+x^8-x+1>0" align="absmiddle" class="latex-formula">
Если
![x \leq -1 x \leq -1](https://tex.z-dn.net/?f=x+%5Cleq+-1)
, то имеем
Отсюда
![image](https://tex.z-dn.net/?f=x%5E8-x%2B1%3E0)
0" alt="x^8-x+1>0" align="absmiddle" class="latex-formula">
Если
![-1 \leq x \leq 0 -1 \leq x \leq 0](https://tex.z-dn.net/?f=-1+%5Cleq+x+%5Cleq+0)
, то имеем
![image](https://tex.z-dn.net/?f=x%5E%7B16%7D-x%5E%7B12%7D%2Bx%5E8-x%2B1+%5Cgeq+x%5E%7B16%7D%2Bx%5E8%2B1+%5C%5C+x%5E%7B16%7D%2Bx%5E8%2B1%3E0)
0" alt="x^{16}-x^{12}+x^8-x+1 \geq x^{16}+x^8+1 \\ x^{16}+x^8+1>0" align="absmiddle" class="latex-formula">
Если
![0 \leq x \leq 1 0 \leq x \leq 1](https://tex.z-dn.net/?f=0+%5Cleq+x+%5Cleq+1)
, то имеем
![image](https://tex.z-dn.net/?f=x%5E%7B16%7D-x%5E%7B12%7D%2Bx%5E8-x%2B1+%5Cgeq+x%5E%7B16%7D-x%2B1+%5C%5C+x%5E%7B16%7D-x%2B1+%5Cgeq+x%5E%7B16%7D+%5C%5C+x%5E%7B16%7D%3E0)
0" alt="x^{16}-x^{12}+x^8-x+1 \geq x^{16}-x+1 \\ x^{16}-x+1 \geq x^{16} \\ x^{16}>0" align="absmiddle" class="latex-formula">
Если
![image](https://tex.z-dn.net/?f=x%3E1%2C)
1," alt="x>1," align="absmiddle" class="latex-formula"> то
![image](https://tex.z-dn.net/?f=x%5E%7B16%7D-x%5E%7B12%7D%2Bx%5E8-x%2B1%3Ex%5E8-x%2B1+%5C%5C+x%5E8-x%2B1%3E1+%5C%5C+1%3E0)
x^8-x+1 \\ x^8-x+1>1 \\ 1>0" alt="x^{16}-x^{12}+x^8-x+1>x^8-x+1 \\ x^8-x+1>1 \\ 1>0" align="absmiddle" class="latex-formula">
Отсюда, во всех возможных , левая часть уравнение принимает только положиьельные значения, отсюда х - любое число
Что и требовалось доказать