2\\\\|3x|= \left \{ {{3x,x \geq 0} \atop {-3x<0}} \right. \\\\1)\; x \geq 0,\;\; 3x>2,\; \; x>\frac{2}{3}\\\\2)\; x<0,\; \; -3x>2,\; \; \to \; \; 3x<-2,\; \; x<-\frac{2}{3}\\\\x\in (-\infty,-\frac{2}{3})U(\frac{2}{3},3)U(3+\infty)" alt="|x-3|\cdot |\frac{3x}{x-3}|=\frac{|x-3|\cdot |3x|}{|x-3|}=|3x|,\; \; \; |x-3|\ne 0,\; \to \; x\ne 3\\\\|3x|>2\\\\|3x|= \left \{ {{3x,x \geq 0} \atop {-3x<0}} \right. \\\\1)\; x \geq 0,\;\; 3x>2,\; \; x>\frac{2}{3}\\\\2)\; x<0,\; \; -3x>2,\; \; \to \; \; 3x<-2,\; \; x<-\frac{2}{3}\\\\x\in (-\infty,-\frac{2}{3})U(\frac{2}{3},3)U(3+\infty)" align="absmiddle" class="latex-formula">